La corriente eléctrica

Cuando una carga se coloca en las inmediaciones de otras cargas,sufre una fuerza que puede desplazarla de su posición El movimiento ordenado de las cargas genera una corriente eléctrica.

¿Qué es la corriente eléctrica?

Las cargas eléctricas pueden desplazarse de un cuerpo a otro (por ejemplo, por frotamiento). La corriente eléctrica consiste en el desplazamiento ordenado de cargas eléctricas, normalmente electrones.

Para que se produzca una corriente se necesitan:

  • Por una parte, cargas que puedan moverse. Estas cargas pueden ser electrones o cualquier otra especie con carga: por ejemplo, los iones, tanto positivos como negativos, originan corrientes eléctricas.
  • Sustancias conductoras por donde puedan desplazarse las cargas móviles. Los conductores pueden ser sólidos, líquidos o gases.
  • Y, finalmente, generadores, dispositivos que, manteniendo el desequilibrio de cargas y aportando la energía necesaria, consiguen el movimiento de dichas cargas. Son generadores las máquinas que existen en las centrales eléctricas, las dinamos que dan a una bicicleta o las pilas que permiten el funcionamiento de una linterna. Si falta alguno de estos elementos, la corriente eléctrica no podrá mantenerse en un circuito. Así, cuando una pila se agota ya no es capaz de transportar los electrones desde el borne positivo al borne negativo y la corriente se interrumpe en el circuito.

Conductores y aislantes

En los materiales llamados conductores existen partículas con carga eléctrica que pueden desplazarse. Los metales son buenos conductores de la corriente eléctrica, pues disponen de electrones que pueden moverse con libertad a lo largo del metal. Los mejores conductores son la plata, el cobre, el oro y el aluminio. 
En otros materiales llamados aislantes, las cargas no pueden moverse con libertad por lo que no se produce una corriente eléctrica. La madera o la goma son buenos aislantes en ellos no hay cargas eléctricas que tengan libertad para moverse a lo largo del material.

Convenciones

En un material conductor, las partículas cargadas en movimiento que constituyen la corriente eléctrica se denominan portadores de carga. En los metales, que constituyen los cables y otros conductores de la mayoría de los circuitos eléctricos, los núcleos atómicos de los átomos cargados positivamente se mantienen en una posición fija, y los electrones cargados negativamente son los portadores de carga, libres de moverse en el metal. En otros materiales, especialmente los semiconductores, los portadores de carga pueden ser positivos o negativos, dependiendo del dopante utilizado. Los portadores de carga positivos y negativos pueden incluso estar presentes al mismo tiempo, como ocurre en un electrolito en una célula electroquímica.

Un flujo de cargas positivas da la misma corriente eléctrica, y tiene el mismo efecto en un circuito, que un flujo igual de cargas negativas en sentido contrario. Como la corriente puede ser el flujo de cargas positivas o negativas, o de ambas, se necesita una convención para la dirección de la corriente que sea independiente del tipo de portador de carga. La dirección de la "corriente convencional" se define arbitrariamente como la dirección en la que fluyen las cargas positivas. Los portadores con carga negativa, como los electrones (los portadores de carga en los cables metálicos y muchos otros componentes de los circuitos electrónicos), por lo tanto, fluyen en la dirección opuesta al flujo de corriente convencional en un circuito eléctrico.

Tipos de corriente eléctrica

Dependiendo de la temporalidad del sentido de la corriente eléctrica podemos distinguir vario tipos:

  • Corriente contínua (C.C.). El flujo de eléctrones se produce siempre en el mismo sentido. Se denomina corriente continua o corriente directa (CC en español, en inglés DC, de direct current) al flujo de cargas eléctricas que no cambia de sentido con el tiempo. La corriente eléctrica a través de un material se establece entre dos puntos de distinto potencial. Cuando hay corriente continua, los terminales de mayor y menor potencial no se intercambian entre sí. Es errónea la identificación de la corriente continua con la corriente constante (ninguna lo es, ni siquiera la suministrada por una batería). Es continua toda corriente cuyo sentido de circulación es siempre el mismo, independientemente de su valor absoluto.
    Su descubrimiento se remonta a la invención de la primera pila voltaica por parte del conde y científico italiano Alessandro Volta. No fue hasta los trabajos de Edison sobre la generación de electricidad, en las postrimerías del siglo xix, cuando la corriente continua comenzó a emplearse para la transmisión de la energía eléctrica. Ya en el siglo xx este uso decayó en favor de la corriente alterna, que presenta menores pérdidas en la transmisión a largas distancias, si bien se conserva en la conexión de redes eléctricas de diferentes frecuencias y en la transmisión a través de cables submarinos.
    Desde 2008 se está extendiendo el uso de generadores de corriente continua a partir de células fotoeléctricas que permiten aprovechar la energía solar.
    Cuando es necesario disponer de corriente continua para el funcionamiento de aparatos electrónicos, se puede transformar la corriente alterna de la red de suministro eléctrico mediante un proceso, denominado rectificación, que se realiza con unos dispositivos llamados rectificadores, basados en el empleo de diodos semiconductores o tiristores (antiguamente, también de tubos de vacío).
  • Corriente alterna (C.A.). Se denomina corriente alterna (simbolizada CA en español y AC en inglés, de alternating current) a la corriente eléctrica en la que la magnitud y dirección varían cíclicamente. La forma de onda de la corriente alterna más comúnmente utilizada es la de una onda senoidal.10​ En el uso coloquial, «corriente alterna» se refiere a la forma en la cual la electricidad llega a los hogares y a las empresas.
    El sistema usado hoy en día fue ideado fundamentalmente por Nikola Tesla, y la distribución de la corriente alterna fue comercializada por George Westinghouse. Otros que contribuyeron al desarrollo y mejora de este sistema fueron Lucien Gaulard, John Gibbs y Oliver B. Shallenberger entre los años 1881 y 1889. La corriente alterna superó las limitaciones que aparecían al emplear la corriente continua (CC), la cual constituye un sistema ineficiente para la distribución de energía a gran escala debido a problemas en la transmisión de potencia.
    La razón del amplio uso de la corriente alterna, que minimiza los problemas de trasmisión de potencia, viene determinada por su facilidad de transformación, cualidad de la que carece la corriente continua. La energía eléctrica trasmitida viene dada por el producto de la tensión, la intensidad y el tiempo. Dado que la sección de los conductores de las líneas de transporte de energía eléctrica depende de la intensidad, se puede, mediante un transformador, modificar la tensión hasta altos valores (alta tensión), disminuyendo en igual proporción la intensidad de corriente. Esto permite que los conductores sean de menor sección y, por tanto, de menor costo; además, minimiza las pérdidas por efecto Joule, que dependen del cuadrado de la intensidad. Una vez en el punto de consumo o en sus cercanías, la tensión puede ser de nuevo reducida para permitir su uso industrial o doméstico de forma cómoda y segura. Las frecuencias empleadas en las redes de distribución son 50 y 60 Hz. El valor depende del país.
Otras corrientes

Corriente trifásica 
Se denomina corriente trifásica al conjunto de tres corrientes alternas de igual frecuencia, amplitud y valor eficaz que presentan una diferencia de fase entre ellas de 120°, y están dadas en un orden determinado. Cada una de las corrientes que forman el sistema se designa con el nombre de fase.
La generación trifásica de energía eléctrica es más común que la monofásica y proporciona un uso más eficiente de los conductores. La utilización de electricidad en forma trifásica es mayoritaria para transportar y distribuir energía eléctrica y para su utilización industrial, incluyendo el accionamiento de motores. Las corrientes trifásicas se generan mediante alternadores dotados de tres bobinas o grupos de bobinas, arrolladas en un sistema dispuesto a 120 grados eléctricos entre cada fase.
Los conductores de los tres electroimanes pueden conectarse en estrella o en triángulo. En la disposición en estrella cada bobina se conecta a una fase en un extremo y a un conductor común en el otro, denominado neutro. Si el sistema está equilibrado, la suma de las corrientes de línea es nula, con lo que el transporte puede ser efectuado usando solamente tres cables. En la disposición en triángulo o delta cada bobina se conecta entre dos hilos de fase, de forma que un extremo de cada bobina está conectado con otro extremo de otra bobina.​
El sistema trifásico presenta una serie de ventajas tales como la economía de sus líneas de transporte de energía (hilos más finos que en una línea monofásica equivalente) y de los transformadores utilizados, así como su elevado rendimiento de los receptores, especialmente motores, a los que la línea trifásica alimenta con potencia constante y no pulsada, como en el caso de la línea monofásica.
Tesla fue el inventor que descubrió el principio del campo magnético rotatorio en 1882, el cual es la base de la maquinaria de corriente alterna. Él inventó el sistema de motores y generadores de corriente alterna polifásica que da energía al planeta.

Corriente monofásica 
Se denomina corriente monofásica a la que se obtiene de tomar una fase de la corriente trifásica y un cable neutro. En España y demás países que utilizan valores similares para la generación y trasmisión de energía eléctrica, este tipo de corriente facilita una tensión de 230 voltios, lo que la hace apropiada para que puedan funcionar adecuadamente la mayoría de electrodomésticos y luminarias que hay en las viviendas. Desde el centro de transformación más cercano hasta las viviendas se disponen cuatro hilos: un neutro (N) y tres fases (R, S y T). Si la tensión entre dos fases cualesquiera (tensión de línea) es de 400 voltios, entre una fase y el neutro es de 220 voltios. En cada vivienda entra el neutro y una de las fases, conectándose varias viviendas a cada una de las fases y al neutro; esto se llama corriente monofásica. Si en una vivienda hay instalados aparatos de potencia eléctrica alta (aire acondicionado, motores, etc., o si es un taller o una empresa industrial) habitualmente se les suministra directamente corriente trifásica que ofrece una tensión de 400 voltios.
Cable eléctrico Cable eléctrico
El cable eléctrico combina materiales conductores y aislantes de la electricidad. En el cable del ejemplo, los hilos individuales azul, marrón y amarillo-verde encierran un núcleo de cobre rígido (hoy es más común el flexible). Pues bien, solo ese cobre conduce la electricidad. Por cierto: la manguera eléctrica suele usarse en el exterior, por cuanto es más segura por ir doblemente aislada. Los cables de alta tensión, sin embargo, no están aislados, sino desnudos: solo constan de material conductor.


Corriente continua Corriente continua
La corriente continua directa implica el tránsito continuo de una carga eléctrica entre dos puntos del conductor que tienen diferente potencial y carga eléctricos, de manera tal que nunca cambia con el tiempo.


Corriente alterna Corriente alterna
Se llama corriente alterna (CA) al tipo de corriente eléctrica más empleado domésticamente, caracterizado por oscilar de manera regular y cíclica en su magnitud y sentido. La manera más usual de representarla es mediante una gráfica (sobre un eje x/y) en forma de ondas sinusoidales.


Corriente trifásica Corriente trifásica
La corriente trifásica es un sistema de tres corrientes alternas acopladas (las 3 corrientes se producen simultáneamente en un mismo generador). Cada una de estas corrientes (fases) se transporta por un conductor de fase (3 cables: R, S y T, con colores marrón, negro y gris), y se añade un conductor para el retorno común de las tres fases, que sirve para cerrar los 3 circuitos (conductor neutro N, color azul).


Motor asíncrono trifásico Motor asíncrono trifásico
Un motor trifásico es aproximadamente 150% mayor que la de un motor monofásico. En un sistema trifásico equilibrado los conductores necesitan ser el 75% del tamaño que necesitarían para un sistema monofásico con la misma potencia en VA por lo que esto ayuda a disminuir los costos y por lo tanto a justificar el tercer cable requerido. La potencia proporcionada por un sistema monofásico cae tres veces por ciclo. La potencia proporcionada por un sistema trifásico nunca cae a cero por lo que la potencia enviada a la carga es siempre la misma.