Maquinas simples

Una máquina simple es un dispositivo mecánico que cambia la dirección o la magnitud de una fuerza, desde los inicios de la Revolución Industrial hasta la actualidad, la concepción teórica de las máquinas ha evolucionado de forma considerable, sin embargo, el concepto clásico de máquina simple sigue manteniendo su vigencia, tanto por su significación histórica, como por ser un valioso elemento didáctico utilizado ampliamente en la enseñanza de algunas nociones básicas de la física.​ Por otro lado, numerosos mecanismos sencillos basados en las máquinas simples siguen siendo generalmente utilizados para la producción artesanal.

Una máquina simple utiliza una única fuerza aplicada transformándola en una fuerza resultante, que realiza un trabajo desplazando una sola carga (o venciendo una fuerza resistente). Si se omiten las pérdidas por rozamiento, el trabajo realizado por la fuerza aplicada es igual al trabajo realizado por la fuerza resultante sobre la carga. La máquina puede aumentar la magnitud de la fuerza aplicada a lo largo de una determinada distancia (al transformarla en la fuerza resultante), pero a costa de una disminución proporcional en la distancia recorrida por la carga. La relación entre la fuerza aplicada y la fuerza resultante se denomina ventaja mecánica.

Las máquinas simples pueden ser consideradas como los "bloques de construcción" elementales a partir de los que se diseñan máquinas más complejas (denominadas en ocasiones "máquinas compuestas"​ como por ejemplo, el mecanismo de una bicicleta, donde se utilizan ruedas, palancas y poleas).​ La ventaja mecánica de una máquina compuesta es el producto de las ventajas mecánicas de las máquinas simples de las que está compuesta.

Las máquinas simples clásicas

De acuerdo con la clasificación tradicional, las seis máquinas simples son:

  • Palanca La palanca es una barra rígida con un punto de apoyo, llamado fulcro, a la que se aplica una fuerza y que, girando sobre el punto de apoyo, vence una resistencia. Se cumple la conservación de la energía y, por lo tanto, la fuerza aplicada por su espacio recorrido ha de ser igual a la fuerza de resistencia por su espacio recorrido.
  • Torno Es un dispositivo mecánico generalmente utilizado para mover verticalmente grandes pesos. Está formado por una cuerda de la que se fija uno de los extremos a la carga a desplazar y el otro extremo a un cilindro que es a su vez fijado de tal manera que solo puede rotar en torno a su eje principal. Actuando el cilindro con una manivela la cuerda se enrolla sobre él, consiguiendo subir la carga.
  • Polea Es un aparato mecánico de tracción constituido por una rueda acanalada o roldana por donde pasa una cuerda, lo que permite transmitir una fuerza en una dirección diferente a la aplicada. Además, formando aparejos o polipastos de dos o más poleas es posible también aumentar la magnitud de la fuerza transmitida para mover objetos pesados, a cambio de la reducción del desplazamiento producido.
  • Plano inclinado En el plano inclinado se aplica una fuerza para vencer la resistencia vertical del peso del objeto a levantar. Dado el principio de conservación de la energía, cuanto más pequeño sea el ángulo del plano inclinado, más peso se podrá elevar con la misma fuerza aplicada, pero a cambio, la distancia a recorrer será mayor.
  • Cuña La cuña transforma una fuerza aplicada a su extremo romo en dos fuerzas perpendiculares a la primera y de sentido contrario entre ellas. El ángulo de la cuña determina la proporción entre la fuerza aplicada y las resultantes, de un modo parecido al plano inclinado. Es el caso de hachas o cuchillos.
  • Tornillo El mecanismo transforma un movimiento giratorio aplicado a un volante o manilla, en otro rectilíneo en el husillo, mediante un mecanismo de tornillo y tuerca. La fuerza aplicada por la longitud de la circunferencia del volante ha de ser igual a la fuerza resultante por el avance del husillo. Dado el gran desarrollo de la circunferencia y el normalmente pequeño avance del husillo, la relación entre las fuerzas es muy grande. Herramientas como el gato del coche o el sacacorchos derivan del funcionamiento del tornillo.

Palanca

La palanca​ es una máquina simple​ cuya función consiste en transmitir fuerza y desplazamiento. Está compuesta por una barra rígida que puede girar libremente alrededor de un punto de apoyo, llamado fulcro.​ Puede utilizarse para amplificar la fuerza mecánica aplicada a un objeto, para incrementar su velocidad o distancia recorrida, en respuesta a la aplicación de una fuerza. En las palancas de segundo género, el punto de apoyo está situado en un extremo, y cerca de él está la resistencia. En las palancas de segundo género, la resistencia se mueve en la misma dirección que la fuerza.

Tipos de palancas

Las palancas se dividen en tres géneros,​ también llamados grados, dependiendo de la posición relativa de los puntos de aplicación de la potencia y de la resistencia con respecto al fulcro o punto de apoyo. El principio de la palanca es válido indistintamente del tipo que se trate, pero el efecto y la forma de uso de cada uno cambian considerablemente.

  • Palanca de primer grado En la palanca de primer grado, el fulcro se encuentra situado entre la potencia y la resistencia. ​ Se caracteriza en que la potencia puede ser menor que la resistencia, aunque a costa de disminuir la velocidad transmitida y la distancia recorrida por la resistencia. Ejemplos de este tipo de palanca son las balanzas, las tijeras, las tenazas, las pinzas​ .
  • Palanca de segundo grado En la palanca de segundo grado, la resistencia se encuentra entre la potencia y el fulcro. ​ Se caracteriza en que la potencia es siempre menor que la resistencia, aunque a costa de disminuir la velocidad transmitida y la distancia recorrida por la resistencia. Como ejemplo está la carretilla​ y el cascanueces manual de tenaza.
  • Palanca de tercer grado En la palanca de tercer grado, la potencia se encuentra entre la resistencia y el fulcro. Se caracteriza en que la fuerza aplicada es mayor que la resultante​ y se utiliza cuando lo que se requiere es ampliar la velocidad transmitida a un objeto o la distancia recorrida por él. Ejemplos de este tipo de palanca son el quitagrapas, la caña de pescar y la pinza de cejas  .

Torno

El torno es un tipo de máquina simple habitualmente utilizada para mover verticalmente grandes pesos, fue creada aproximadamente en el 3000 A.C .Su configuración más sencilla tradicionalmente consta de un cilindro (generalmente de madera) al que se fija una cuerda, atravesado longitudinalmente por un eje de acero sujeto en sus extremos mediante dos argollas que permiten su giro en posición horizontal. Al hacer rotar el cilindro sobre el eje mediante una manivela, se enrolla la cuerda a la que se ha atado el peso, haciéndolo subir.
El torno y el cabrestante son la misma máquina desde el punto de vista físico. En origen, el término genérico para designar a esta clase de máquinas es torno, siendo el cabrestante un tipo de torno especial, con su eje dispuesto verticalmente. Sin embargo, en la actualidad el término torno suele reservarse exclusivamente para los clásicos dispositivos con el cilindro dispuesto horizontalmente utilizados para elevar verticalmente cargas pesadas (por lo general, manualmente); mientras que el término cabrestante suele aplicarse a cualquier dispositivo motorizado capaz de recoger un cable, que se utiliza para arrastrar cargas tanto en vertical como en horizontal o sobre un plano inclinado.

Polea

Una polea es una máquina simple, un dispositivo mecánico de tracción, que sirve para transmitir una fuerza. Consiste en una rueda con un canal en su periferia, por el cual pasa una cuerda que gira sobre un eje central. Además, formando conjuntos —aparejos o polipastos— sirve para reducir la magnitud de la fuerza necesaria para mover un peso.
Según la definición de la Goupillière, «la polea es el punto de apoyo de una cuerda que moviéndose se arrolla sobre ella sin dar una vuelta completa»​ actuando en uno de sus extremos la resistencia y en otro la potencia.
Las primeras evidencias de poleas se remontan al Antiguo Egipto en la Duodécima Dinastía (1991-1802 a. C.)2​ y la Mesopotamia a principios del segundo milenio a. C.3​ En el Egipto romano, Herón de Alejandría (c. 10-70 CE) identificó la polea como una de las seis máquinas simples utilizadas para levantar pesos.​ Las poleas se ensamblan para formar un bloque y aparejo con el fin de proporcionar ventaja mecánica para aplicar grandes fuerzas. Las poleas también se ensamblan como parte de correa y transmisión de cadena para transmitir la potencia de un eje giratorio a otro.​ La obra de Plutarco Vidas paralelas relata una escena en la que Arquímedes demostró la eficacia de las poleas compuestas y del sistema de bloqueo y enganche utilizando una de ellas para tirar de un barco completamente cargado hacia él como si se deslizara por el agua.

Partes de la polea
Está compuesta por tres partes:

  • Llanta: Es una zona exterior de la polea y su constitución es esencial, ya que se adaptará a la forma de la correa que alberga.
  • El cuerpo: Las poleas están formadas por una pieza maciza cuando son de pequeño tamaño. Cuando sus dimensiones aumentan, irán provistas de nervios y/o brazos que generen la polea, uniendo el cubo con la llanta.
  • El cubo: Es el agujero cónico y cilíndrico que sirve para acoplar al eje. En la actualidad se emplean mucho los acoplamientos cónicos en las poleas, ya que resulta muy cómodo su montaje.
Designación y tipos

Los elementos constitutivos de una polea son la rueda o polea propiamente dicha, en cuya circunferencia (llanta) suele haber una acanaladura denominada "garganta" o "cajera" cuya forma se ajusta a la de la cuerda a fin de guiarla; las "armas", armadura en forma de U invertida o rectangular que la rodea completamente y en cuyo extremo superior monta un gancho por el que se suspende el conjunto, y el "eje", que puede ser fijo si está unido a las armas estando la polea atravesada por él ("poleas de ojo"), o móvil si es solidario a la polea ("poleas de eje"). Cuando, formando parte de un sistema de transmisión, la polea gira libremente sobre su eje, se denomina "loca".
Según su desplazamiento las poleas se clasifican en "fijas", aquellas cuyas armas se suspenden de un punto fijo (la estructura del edificio) y por lo tanto, no sufren movimiento de traslación alguno cuando se emplean con "móviles", las cuales son aquellas en las que un extremo de la cuerda se suspende de un punto fijo y que durante su funcionamiento se desplazan, generalmente, de manera vertical.​ Cuando la polea obra independientemente se denomina «simple», mientras que cuando se encuentra reunida con otras formando un sistema recibe la denominación de «combinada» o «compuesta».

Poleas compuestas
Existen sistemas múltiples de poleas que pretenden obtener una gran ventaja mecánica, es decir, elevar grandes pesos con un bajo esfuerzo. Estos sistemas de poleas son diversos, aunque tienen algo en común, en cualquier caso, se agrupan en grupos de poleas fijas y móviles: destacan los polipastos:

Polipastos o aparejos
El polipasto (del latín polyspaston, y este del griego πολύσπαστον), es la configuración más común de polea compuesta. En un polipasto, las poleas se distribuyen en dos grupos, uno fijo y uno móvil. En cada grupo se instala un número arbitrario de poleas. La carga se une al grupo móvil.

Sistemas de cuerdas y poleas

Un polipasto que usa el sistema de poleas compuestas que produce una ventaja de la polea fija única está instalada en el polipasto. Las dos poleas móviles (unidas) se sujetan al gancho. Un extremo de la cuerda está unido al marco de la grúa, otro al cabrestante.
Un sistema de cuerda y polea, es decir, un bloque y aparejo, se caracteriza por el uso de una sola cuerda continua para transmitir una fuerza de tensión alrededor de una o más poleas para levantar o mover una carga; la cuerda puede ser un línea ligera o un cable fuerte. Este sistema está incluido en la lista de máquinas simples identificadas por los científicos del Renacimiento.
Si el sistema de cuerda y polea no disipa ni almacena energía, entonces su ventaja mecánica es el número de partes de la cuerda que actúan sobre la carga. Esto se puede demostrar de la siguiente manera.
Considere el conjunto de poleas que forman el bloque móvil y las partes de la cuerda que soportan este bloque. Si hay p de estas partes de la cuerda que soportan la carga W, entonces un balance de fuerzas en el bloque móvil muestra que la tensión en cada una de las partes de la cuerda debe ser W/p. Esto significa que la fuerza de entrada en la cuerda es T=W/p. Por lo tanto, el bloque y el aparejo reducen la fuerza de entrada por el factor p.

Plano inclinado

El plano inclinado (también conocido como rampa o pendiente) es una máquina simple que consiste en una superficie plana que forma un ángulo agudo con el suelo y se utiliza para elevar cuerpos a cierta altura.1​ Tiene la ventaja de que se requiere una fuerza menor a la empleada para levantar dicho cuerpo verticalmente (gracias a la descomposición de fuerzas), aunque se deba aumentar la distancia recorrida y vencer la fuerza de rozamiento.

Análisis de Plano inclinado
Una carga que descansa sobre un plano inclinado, cuando se considera como un cuerpo libre tiene tres fuerzas actuando sobre ella:

  • La fuerza aplicada, Fap ejercida sobre la carga para moverla, que actúa paralela al plano inclinado.
  • El peso de la carga, Fp, que actúa verticalmente hacia abajo
  • La fuerza del plano sobre la carga, que se puede descomponer en dos componentes:
    • La fuerza normal Fn del plano inclinado sobre la carga que la soporta. Esta se dirige perpendicular (normal) a la superficie.
    • La fuerza de fricción, Ff del plano sobre la carga actúa paralela a la superficie, y siempre tiene una dirección opuesta al movimiento del objeto. Es igual a la fuerza normal multiplicada por el coeficiente de fricción μ entre las dos superficies.
Usando las leyes de Newton, la carga estará estacionaria o en movimiento constante si la suma de las fuerzas sobre ella es cero. Dado que la dirección de la fuerza de fricción es opuesta para el caso de movimiento cuesta arriba y cuesta abajo, estos dos casos deben considerarse por separado:

  • Movimiento cuesta arriba: La fuerza total sobre la carga es hacia el lado cuesta arriba, por lo que la fuerza de fricción se dirige hacia abajo en el plano, oponiéndose a la fuerza aplicada. La ventaja mecánica es


donde  Esta es la condición para el "movimiento inminente" hacia arriba del plano inclinado. Si la fuerza aplicada Fap es mayor que la dada por esta ecuación, la carga se moverá hacia arriba en el plano.
  • Movimiento cuesta abajo: La fuerza total sobre la carga es hacia el lado cuesta abajo, por lo que la fuerza de fricción se dirige hacia arriba del plano.
Demostración de la ventaja mecánica para el movimiento cuesta abajo
La ventaja mecánica es

Esta es la condición para el movimiento inminente hacia abajo del plano; si la fuerza aplicada Fi es menor que la dada en esta ecuación, la carga se deslizará por el plano. Hay tres casos:

  • : La ventaja mecánica es negativa. En ausencia de fuerza aplicada, la carga permanecerá inmóvil y requiere alguna fuerza aplicada negativa (cuesta abajo) para deslizarse hacia abajo.
  • : El águlo de reposo. La ventaja mecánica es infinita. Sin fuerza aplicada, la carga no se deslizará, pero la más mínima fuerza negativa (cuesta abajo) hará que se deslice.
  • : La ventaja mecánica es positiva. En ausencia de fuerza aplicada, la carga se deslizará hacia abajo del plano y requiere una fuerza positiva (cuesta arriba) para mantenerla inmóvil.
Cuña
Una cuña es una herramienta de diferentes formas como: triangular, cuadrada, media luna, cuchilla, entre otros y es un plano inclinado portátil, y una de las seis máquinas simples clásicas. Se puede usar para separar dos objetos o partes de uno, levantar un objeto o mantenerlo en su lugar. Funciona convirtiendo una fuerza aplicada a su extremo romo en fuerzas perpendiculares (normales) a sus superficies inclinadas.​ La ventaja mecánica de una cuña viene dada por la relación entre la longitud de su pendiente y su ancho.  Aunque una cuña corta con un ángulo amplio puede hacer una labor más rápido, requiere más fuerza que una cuña larga con un ángulo estrecho.
La fuerza se aplica sobre una superficie amplia y plana. Esta energía se transfiere al extremo puntiagudo y afilado de la cuña, permitiendo que el filo penetre en el objeto al generar una elevada presión en el punto de contacto. A su vez, la cuña desgaja el objeto en el que se inserta, gracias a transformar el desplazamiento longitudinal de la cuña en un desplazamiento transversal de magnitud mucho más pequeña, debido al ángulo agudo que forman las dos caras de la cuña.

Tornillo

El tornillo es una máquina simple que deriva directamente de una pieza metálica y siempre trabaja asociado a un orificio roscado. Básicamente puede definirse como un plano inclinado enrollado sobre un cilindro, o lo que es más realista, un surco helicoidal tallado en la superficie de un cilindro (si está tallado sobre un cilindro afilado o un cono tendremos un tirafondo). En él se distinguen tres partes básicas: cabeza, cuello y rosca.
El tornillo deriva directamente de la máquina simple conocida como plano inclinado y siempre trabaja asociado a un orificio roscado.​ Los tornillos permiten que las piezas sujetas con los mismos puedan ser desmontadas cuando lo requiera.
Los tornillos los definen las siguientes características:

  • Diámetro exterior de la caña: en el sistema métrico se expresa en mm y en el sistema inglés en fracciones de pulgada.
  • Tipo de rosca: métrica, Whitworth, trapecial, redonda, en diente de sierra, eléctrica, etc. Las roscas pueden ser exteriores o machos (tornillos) o bien interiores o hembras (tuercas), debiendo ser sus magnitudes coherentes para que ambos elementos puedan enroscarse.
  • Términos de rosca: Existen dos términos de rosca que determinan el uso del tornillo en función de la separación del filete o hilo, o la extensión del fondo: a mayor separación entre los filetes menor compresión y torque; a menor separación entre los filetes más aumenta el torque y la compresión. Los tornillos con mayor separación en sus filetes se denominan bajo el término de rosca "NC" (National Coarse), rosca gruesa, mientras que los que tienen menor separación se denominan bajo el término "NTF" (National Thread Fine) o "NF" (National Fine), rosca fina. Esto determina su función, ya que los tornillos de término "NC" son utilizados para anclajes superficiales, mientras que los de tipo "NTF" o "NF" son utilizados para sistemas de gases y fluidos debido a la presión que pueden ejercer.
  • Paso de la rosca: distancia que hay entre dos crestas sucesivas. En el sistema métrico se expresa en mm y en el sistema inglés por el número de hilos que hay en una pulgada.
  • Sentido de la hélice de la rosca: a derechas o a izquierdas. La mayoría de la tornillería tiene rosca a derechas, pero para aplicaciones especiales, como en ejes de máquinas, contratuercas, etc, tienen alguna vez rosca a izquierdas. Los tornillos de las ruedas de los vehículos industriales tienen roscas de diferente sentido en los tornillos de las ruedas de la derecha (a derechas) que en los de la izquierda (a izquierdas). Esto se debe a que de esta forma los tornillos tienden a apretarse cuando las ruedas giran en el sentido de la marcha. Asimismo, la combinación de roscas a derechas y a izquierdas es utilizada en tensores roscados. El tipo de rosca, métrica o Whitworth, aparte de ser debida al país de origen, tiene distintas características físicas: la rosca inglesa o Whitworth tiene un paso más reducido, por lo cual la rosca métrica tiene una mayor tendencia a aflojarse sola por el movimiento de las piezas. Para evitar este problema se optó por diversas soluciones, como crear variantes de rosca métrica de paso más reducido o usar tuercas y arandelas especiales que impiden más eficazmente que las piezas en movimiento se aflojen solas.
  • Material constituyente y resistencia mecánica que tienen: salvo excepciones, la mayor parte de tornillos son de acero en diferentes grados de aleación y con diferente resistencia mecánica. Para madera se utilizan mucho los tornillos de latón.
  • Tipo de cabeza: en estrella o Phillips, Bristol, de pala y algunos otros especiales como torx.
Palanca Palanca
Una palanca es una máquina simple​ cuya función consiste en transmitir fuerza y desplazamiento. Generalmente está compuesta por una barra rígida que puede girar libremente alrededor de un punto de apoyo, también conocido como fulcro. Puede utilizarse para amplificar la fuerza mecánica aplicada a un objeto, para incrementar su velocidad o distancia recorrida, en respuesta a la aplicación de una fuerza.




Palanca de primer género Palanca de primer género
El punto de apoyo se halla entre la fuerza y la resistencia. También se la llama palanca de equilibrio. Ejemplos de este tipo de palanca son: las tijeras, las tenazas y los alicates.




Palanca de segundo género Palanca de segundo género
La resistencia se encuentra entre el punto de apoyo y la fuerza. Ejemplos de este tipo de palanca son la carretilla, y el cascanueces.




Palanca de tercer género Palanca de tercer género
La fuerza se encuentra entre el punto de apoyo y la resistencia. El tercer tipo es notable porque la fuerza aplicada debe ser mayor que la fuerza que se requeriría para mover el objeto sin la palanca. Este tipo de palancas se utiliza cuando lo que se requiere es amplificar la distancia que el objeto recorre. Ejemplos de este tipo de palancas son las pinzas que se utilizan para depilar y sacar hielos.




Torno como maquina simple Torno
El torno tiene una manivela donde aplicamos la Fuerza o potencia para hacer girar el rodillo, cilindro o tambor en el que colgado de una cuerda tenemos un balde (Resistencia). A medida que giramos la manivela (P) en el sentido horario el balde (Q) asciende. Al girar la manivela describe una circunferencia de radio R1 o R2. Cuando gira la manivela también gira el rodillo, tambor o cilindro describiendo una circunferencia de radio. También en el caso del torno se produce que la fuerza por su brazo es igual a la resistencia por el suyo: P*.R2=Q*R1




Polea Simple Polea Simple
Esta polea consiste en un sistema donde la polea se encuentra sujeta a la viga. De esta manera, su propósito consiste en direccionar de forma distinta la fuerza ejercida, permitiendo la adopción de una posición estratégica para tirar de la cuerda. Las poleas fijas no aportan ninguna ventaja mecánica. Es decir, la fuerza aplicada es igual a la que se tendría que haber empleado para elevar el objeto sin la utilización de la polea.




Aparejo o polipasto Aparejo o polipasto
En este sistema las poleas están ubicadas en dos conjuntos, en el primero se encuentran las poleas fijas y en el segundo las móviles. El objeto o la carga se acopla al segundo grupo. Los polipastos cuentan con una gran diversidad de tamaños. Aquellos más diminutos son ejecutados a mano, mientras que los de mayor tamaño cuentan con un motor.




Plano inclinado y las fuerzas que actúan sobre el sólido Plano inclinado y las fuerzas que actúan sobre el sólido
La fuerza de resistencia es Fr =m*g. Para superar la fuerza de resistencia y elevar el objeto a una altura h, realizamos un trabajo sobre el objeto. O lo que es lo mismo, le proporcionamos la energía potencial gravitacional mgh. En el caso ideal sin fricción, ejerciendo Fe para empujar el objeto arriba del plano inclinado, hacemos el mismo trabajo. De modo que igualando los trabajos Fe*L = Fr*h, llegamos a la ventaja de la máquina ideal Fr/Fe = L/h mostrada en la ilustración.




El hacha o los cuchillos ejemplos de cuñas El hacha o los cuchillos ejemplos de cuñas
En una cuña cuanto menor sea el ángulo α, mayor será la relación entre la fuerza de elevación y la fuerza aplicada sobre la cuña. Esta es la ventaja mecánica de la cuña. Esta fórmula de ventaja mecánica se aplica a las operaciones de corte y división, así como a la elevación. También se pueden utilizar para separar objetos, como bloques de piedra tallada. Los mazos y las cuñas se utilizan para partir la madera a lo largo de la veta. Una cuña estrecha con un cono relativamente largo que se usa para ajustar con precisión la distancia entre los objetos se llama calce y se usa comúnmente en carpintería. Las puntas de las horquillas y los clavos también son cuñas, ya que parten y separan el material en el que se empujan o clavan; los ejes pueden entonces mantenerse firmes debido a la fricción.




Diversos Tipos de tornillo Diversos Tipos de tornillos
El término tornillo se utiliza generalmente en forma genérica: son muchas las variedades de materiales, tipos y tamaños que existen. Una primera clasificación puede ser la siguiente:​
  • Tornillos tirafondos para madera
  • Autorroscantes y autoperforantes para chapas metálicas y maderas duras
  • Tornillos tirafondos para paredes y muros de edificios
  • Tornillos de roscas cilíndricas
  • Varillas roscadas de un metro de longitud